

Cambridge International AS & A Level

CANDIDATE
NAME

CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

* 7 3 5 4 6 4 7 7 5 5 *

MATHEMATICS

9709/33

Paper 3 Pure Mathematics 3

October/November 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has **20** pages. Any blank pages are indicated.

BLANK PAGE

1 Find the set of values of x satisfying the inequality $|2^{x+1} - 2| < 0.5$, giving your answer to 3 significant figures. [4]

2 On an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z - 1 + 2i| \leq |z|$ and $|z - 2| \leq 1$. [5]

3 The polynomial $2x^3 + ax^2 + bx + 6$, where a and b are constants, is denoted by $p(x)$. When $p(x)$ is divided by $(x + 2)$ the remainder is -38 and when $p(x)$ is divided by $(2x - 1)$ the remainder is $\frac{19}{2}$.

Find the values of a and b .

[5]

4 Solve the quadratic equation $(3 + i)w^2 - 2w + 3 - i = 0$, giving your answers in the form $x + iy$, where x and y are real. [5]

5 Find the exact coordinates of the stationary points of the curve $y = \frac{e^{3x^2-1}}{1-x^2}$. [6]

6 (a) Show that the equation $\cot^2 \theta + 2 \cos 2\theta = 4$ can be written in the form

$$4 \sin^4 \theta + 3 \sin^2 \theta - 1 = 0.$$

[3]

(b) Hence solve the equation $\cot^2 \theta + 2 \cos 2\theta = 4$, for $0^\circ < \theta < 360^\circ$. [3]

7 The equation of a curve is $x^3 + y^2 + 3x^2 + 3y = 4$.

(a) Show that $\frac{dy}{dx} = -\frac{3x^2 + 6x}{2y + 3}$. [3]

(b) Hence find the coordinates of the points on the curve at which the tangent is parallel to the x -axis. [5]

8 The variables x and y satisfy the differential equation

$$e^{4x} \frac{dy}{dx} = \cos^2 3y.$$

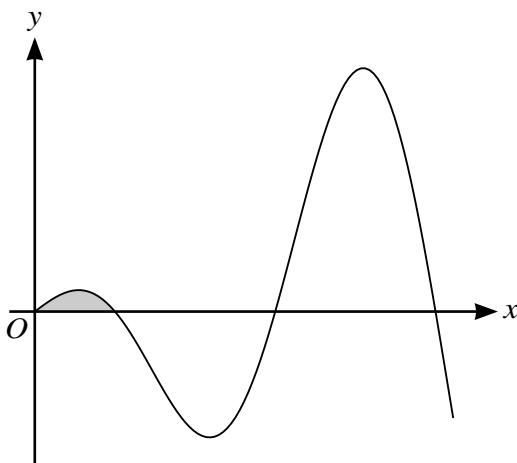
It is given that $y = 0$ when $x = 2$.

Solve the differential equation, obtaining an expression for y in terms of x .

[7]

9 Let $f(x) = \frac{17x^2 - 7x + 16}{(2 + 3x^2)(2 - x)}$.

(a) Express $f(x)$ in partial fractions.


[5]

(b) Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and including the term in x^3 . [5]

(c) State the set of values of x for which the expansion in (b) is valid. Give your answer in an exact form. [1]

.....
.....
.....

10

The diagram shows the curve $y = x \cos 2x$, for $x \geq 0$.

(a) Find the equation of the tangent to the curve at the point where $x = \frac{1}{2}\pi$. [4]

(b) Find the exact area of the shaded region shown in the diagram, bounded by the curve and the x -axis. [5]

11 The line l has equation $\mathbf{r} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k} + \lambda(-\mathbf{i} + \mathbf{j} + 2\mathbf{k})$. The points A and B have position vectors $-2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $3\mathbf{i} - \mathbf{j} + \mathbf{k}$ respectively.

(a) Find a unit vector in the direction of l .

[2]

The line m passes through the points A and B .

(b) Find a vector equation for m .

[2]

(c) Determine whether lines l and m are parallel, intersect or are skew. [5]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.